LIEN VERS LA PAGE WEB EN FRANÇAIS Atmospheric Transport and
Dispersion Modelling Canadian Multiscale
Wildland Fire Smoke Atmospheric Transport Forecast System for Environmental
Emergency Response in Canada Technical
Documentation MODELLING PARAMETERS The atmospheric transport and dispersion modelling
simulations for wildland (forest, grass, bush, peat) fire smoke are produced
automatically based on the emission scenario given in the table below.
INFORMATION ON PRODUCTS These products are published by the Canadian
Meteorological Centre’s (CMC) Environmental Emergency Response Section (EERS)
and are updated four times a day in synchronization with the latest
meteorological forecasts of the High Resolution Deterministic Prediction
System (HRDPS) at 2.5 km horizontal grid mesh. These meteorological forecasts drive the MLDP atmospheric transport and dispersion model. These simulations are based on the emission
scenario described above in the modelling parameters table for planning and
prevention purposes (e.g. command post establishment, guidance for air and
ground sampling) for emergency management organizations. Red dots displayed on the maps represents the
detected hotspots used in the modelling. Blue dots displayed on the maps represents main
cities. The near-ground (within
the layer SFC-250 m) modelled PM2.5 concentrations (micrograms/m3)
are displayed according to the color bar scale. Modelled smoke concentrations can vary greatly from
one fire to another and from one simulation to another due to the diurnal
cycle, the meteorological conditions prevailing at the location and time of
emission, the behavior of the fire and the presence of cloud cover precluding
the detection of hotspots by the sensors. The mean sea-level pressure field is superimposed on
the animations. This field is depicted with isobars (thin solid black lines)
every 4 hPa. The low level wind field (near the surface, i.e. at
40 m above ground level) is displayed in the background on the animations and
is depicted with thin grey barbs. The wind speed is expressed in knots. The
wind speed scale is displayed in the lower right corner. The date and time of validity of the forecast
are displayed in the upper left corner in the time zone of the region (UTC or
daylight saving time). Since the simulations use high spatial and temporal
resolution data, some topographical effects might be well captured by the
dispersion model (e.g. channeling effects). In some cases, higher resolution
data may be required. Authorized users may request assistance in
interpretation of products by contacting the EERS at the CMC. Note that for each domain: 1)
A time
animation of the forecast of PM2.5 concentrations is available and
can be viewed using the anim.html file (for online
visualization). 2)
A time
animation of the forecast of PM2.5 concentrations is available and
can be viewed by downloading the zip file (for
offline visualization). 3)
Near-ground
modelled PM2.5 concentrations forecast is available by downloading
the georeferenced Shapefile format file (shp.zip).
OTHER AVAILABLE PRODUCTS The Environmental Data Processing Applications
Section (EDPAS) provides additional air quality products for smoke forest
fires over Canada through the FireWork system:
The Copernicus Atmosphere
Monitoring Service (CAMS) provides additional air quality products for
smoke fires over Canada such as Particulate Matter (PM2.5)
Forecasts. MAIN FEATURES OF MLDP AND FIREWORK SYSTEMS The following
document describes the main features of complementary MLDP and FireWork
systems. REMARK High-resolution
products on small geographical domains can be configured differently upon
users’ requests. REFERENCES TO MLDP MODEL Maurer, C., Galmarini,
S., Solazzo, E., Kuśmierczyk-Michulec,
J., Baré, J., Kalinowski, M., Schoeppner, M.,
Bourgouin, P., Crawford, A., Stein, A., Chai, T., Ngan, F., Malo, A., Seibert, P., Axelsson,
A., Ringbom, A., Britton, R., Davies, A., Goodwin,
M., Eslinger, P.W., Bowyer, T.W., Glascoe, L.G., Lucas, D.D., Cicchi, S., Vogt, P., Kijima, Y., Furuno, A., Long, P.K.,
Orr, B., Wain, A., Park, K., Suh, K.-S., Quérel,
A., Saunier, O., Quélo,
D., 2022, “Third international challenge to
model the medium- to long-range transport of radioxenon to four Comprehensive
Nuclear-Test-Ban Treaty monitoring stations”, Journal of Environmental Radioactivity, 255,
106968, doi:10.1016/j.jenvrad.2022.106968. Hoffman, I., Malo, A.,
Ungar, K., 2022, “Uncertainty
and source term reconstruction with environmental air samples”,
Journal of Environmental Radioactivity, 246,
106836, doi:10.1016/j.jenvrad.2022.106836. Williams, C.G.,
Barnéoud, P., 2021, “Live pine pollen in rainwater: reconstructing its
long-range transport”, Aerobiologia, 37
(2), 333–350, doi:10.1007/s10453-021-09697-5. Hoffman, I., Malo, A., Mekarski, P., Yi, J., Zhang, W., Ek, N., Bourgouin, P.,
Wotawa, G., Ungar, K., 2020, “Mapping
the deposition of 137Cs and 131I in North America
following the 2011 Fukushima Daiichi Reactor accident”, Atmospheric
Environment: X, 6, 100072, doi:10.1016/j.aeaoa.2020.100072. Maurer, C., Baré, J., Kusmierczyk-Michulec,
J., Crawford, A., Eslinger, P.W., Seibert, P., Orr, B., Philipp, A., Ross,
O., Generoso, S., Achim, P., Schoeppner, M., Malo, A., Ringbom,
A., Saunier, O., Quèlo, D., Mathieu, A., Kijima,
Y., Stein, A., Chai, T., Ngan, F., Leadbetter, S.J., De Meutter, P., Delcloo, A., Britton, R., Davies, A., Glascoe, L.G.,
Lucas, D.D., Simpson, M.D., Vogt, P., Kalinowski, M., Bowyer, T.W., 2018, “International
challenge to model the long-range transport of radioxenon released from
medical isotope production to six Comprehensive Nuclear-Test-Ban Treaty
monitoring stations”, Journal of Environmental Radioactivity, 192, 667–686, doi:10.1016/j.jenvrad.2018.01.030. Sioris, C. E., Malo, A., McLinden, C. A., D’Amours, R.,
2016, “Direct injection of water vapor into the
stratosphere by volcanic eruptions”, Geophysical Research Letters, 43 (14), 7694–7700, doi:10.1002/2016GL069918. Eslinger, P. W., Bowyer,
T. W., Achim, P., Chai, T., Deconninck, B.,
Freeman, K., Generoso, S., Hayes, P., Heidmann, V., Hoffman, I., Kijima, Y.,
Krysta, M., Malo, A., Maurer, C., Ngan, F., Robins, P., Ross, J. O., Saunier,
O., Schlosser, C., Schöppner, M., Schrom, B. T.,
Seibert, P., Stein, A. F., Ungar, K., Yi, J., 2016, “International challenge to predict the impact
of radioxenon releases from medical isotope production on a comprehensive
nuclear test ban treaty sampling station”, Journal of Environmental
Radioactivity, 157, 41–51, doi:10.1016/j.jenvrad.2016.03.001. D’Amours, R.,
Malo, A., Flesch, T., Wilson, R., Gauthier, J.-P., Servranckx, R., 2015, “The Canadian Meteorological Centre’s
Atmospheric Transport and Dispersion Modelling Suite”,
Atmosphere-Ocean, 53 (2), 176–199,
doi:10.1080/07055900.2014.1000260. Draxler, R., Arnold, D.,
Chino, M., Galmarini, S., Hort, M., Jones, A., Leadbetter, S., Malo, A.,
Maurer, C., Rolph, G., Saito, K., Servranckx, R., Shimbori,
T., Solazzo, E., Wotawa, G., 2015, “World Meteorological Organization’s Model
Simulations of the Radionuclide Dispersion and Deposition from the Fukushima
Daiichi Nuclear Power Plant Accident”, Journal of Environmental
Radioactivity, 139, 172–184, doi:10.1016/j.jenvrad.2013.09.014. Katata, G., Chino, M., Kobayashi, T., Terada, H., Ota, M.,
Nagai, H., Kajino, M., Draxler, R., Hort, M. C.,
Malo, A., Torii, T., Sanada, Y., 2015, “Detailed source term estimation of the
atmospheric release for the Fukushima Daiichi Nuclear Power Station accident
by coupling simulations of an atmospheric dispersion model with an improved
deposition scheme and oceanic dispersion model”, Atmospheric
Chemistry and Physics, 15 (2),
1029–1070, doi:10.5194/acp-15-1029-2015. Health Canada, November
2015, “Special
Environmental Radiation in Canada Report on Fukushima Accident Contaminants –
Technical Report: Surveillance of Fukushima Emissions in Canada March 2011 to
June 2011”, Radiation Protection Bureau, Ottawa, ON, Canada, 122 p, http://publications.gc.ca/site/eng/9.801801/publication.html. D’Amours, R., Mintz, R., Mooney,
C., Wiens, B. J., 2013, “A modeling assessment of the origin of
Beryllium-7 and Ozone in the Canadian Rocky Mountains”, Journal of Geophysical Research:
Atmospheres, 118 (7),
10125–10138, doi:10.1002/jgrd.50761. Stocki, T. J., Ungar, R.
K., D’Amours, R., Bean, M., Bock, K., Hoffman, I., Korpach,
E., Malo, A., 2011, “North Korean nuclear test of October 9th,
2006: The utilization of health Canada’s radionuclide monitoring network and
environment Canada’s atmospheric transport and dispersion modelling”,
Radioprotection, 46 (6),
S529–S534, doi:10.1051/radiopro/20116803s. D’Amours, R., Malo, A.,
Servranckx, R., Bensimon, D., Trudel, S., Gauthier, J.-P., 2010, “Application of the atmospheric Lagrangian
particle dispersion model MLDP0 to the 2008 eruptions of Okmok
and Kasatochi volcanoes”, Journal of Geophysical Research, 115 (D2), 1–11, doi:10.1029/2009JD013602. ACRONYMS
Last update: 8 July 2024,
23:38 UTC |